
B.Tech CSE

Semester III

Viswajyothi College of Engineering and Technology

CST205: OBJECT ORIENTED

PROGRAMMING USING JAVA

MODULE 2

Syllabus of Module 2

 Primitive Data types –

 Operators –

 Control Statements –

 Object Oriented Programming in Java –

 Inheritance -

T1. Herbert Schildt, Java: The Complete Reference, 8/e,
Tata McGraw Hill, 2011.

Data Types

Data type specify size and type of value that can be stored. Data types

are classified as:

 Integer type

 Floating point type

 Character type

 Boolean type

Data Types : Integer Type

 Java supports 4 types of integers

Type Size Minimum value Maximum value

byte 1 byte -128 127

short 2 byte -32768 32767

int 4 byte -2147483648 2147483647

long 8 byte -9223372036854775808 9223372036854775807

Data Types : Floating point Type
 Java supports 2 kinds of floating point storage

 Floating point numbers are treated as double-precision quantities.

To force them to be in single-precision mode, f or F is appended to

numbers.

 There are two kinds of floating-point types, float and double, which

represent single- and double-precision numbers, respectively.

 Width of double : 64

 Width of float : 32

Type Size Minimum value Maximum value

Float 4 byte 1.4e-45 3.4e+38

double 8 byte 4.9e-324 1.8e+308

// FLOATING TYPE EG: Compute the area of a circle.

class Area

{

public static void main(String args[])

{

double pi, r, a;

r = 10.8; // radius of circle

pi = 3.1416; // pi, approximately

a = pi * r * r; // compute area

System.out.println("Area of circle is " + a);

}

} o/p Area of circle is 366.436224

Data Types : Character Type

 Java uses Unicode to represent characters.

 Unicode defines a fully international character set that can represent all

of the characters found in all human languages. Thus, in Java char is a

16-bit type.

 ASCII character set occupies the first 127 values in the Unicode

character set.

 There are no negative chars.

 Even though chars are not integers, in many cases you can operate

on them as if they were integers. This allows you to add two

characters together, or to increment the value of a character

variable.

Type Size Minimum value Maximum value

Char 2 byte 0 65535

class CharDemo

{

public static void main(String args[])

{

char ch1, ch2;

ch1 = 88; // code for X

ch2 = 'Y';

System.out.print("ch1 and ch2: ");

System.out.println(ch1 + " " + ch2);

}

} o/p ch1 and ch2: X Y

CHARACTER TYPE EG

class CharDemo2

{

public static void main(String args[])

{

char ch1;

ch1 = 'X';

System.out.println("ch1 contains " + ch1);

// increment ch1, the next character in the unicode sequence

ch1++;

System.out.println("ch1 is now " + ch1);

}

} o/p ch1 contains X

ch1 is now Y

Data Types : Boolean Type

 boolean type is used for logical values.

 It can have only one of two possible values, true or false.

 This is the type returned by all relational operators

Data Types : Boolean Type

class BoolTest

{

public static void main(String args[]) o/p b is false

{ b is true

boolean b; This is exexuted

b = false; 10>9 is true

System.out.println("b is " + b);

b = true;

System.out.println("b is " + b);

if(b)

System.out.println("This is executed.");

b = false;

if(b)

System.out.println("This is not executed.");

System.out.println("10 > 9 is " + (10 > 9));

}

}

12

Keywords

 There are 49 reserved keywords currently defined in the Java language.

 In addition to the keywords, Java reserves the following: true, false, and

null.

 We may not use these words for the names of variables, classes, and so on.

Variables

 Basic unit of storage in a Java program.

 It is defined by the combination of an identifier, a type, and an

optional initializer.

 Variable declaration Syntax :

type identifier [= value][, identifier [= value] ...] ;

 Dynamic Initialization

 Variables are initialized dynamically(at run time)

Variables : Scope and Life time

Java allows variables to be declared within any block.

 A block is begun with an opening curly brace and ended by a

closing curly brace. A block defines a scope.

 Within a block, variables can be declared at any point, but are valid

only after they are declared.

 Two major scopes are

 those defined by a class and

 those defined by a method.

 The scope defined by a method begins with its opening curly

brace.

 If a method has parameters, they too are included within the

method’s scope.

Variables : Scope and Life time

 Scopes can be nested.

 The objects declared in the outer scope will be visible to code

within the inner scope.

 The reverse is not true.

 We cannot declare a variable to have the same name as one in an

outer scope.

Example:

class Scope

{

public static void main(String args[])

{

int x; // known to all code within main

x = 10;

if(x == 10)

{ // start new scope

int y = 20; // known only to this block

System.out.println("x and y: " + x + " " + y);

x = y * 2;

}

y = 100; // Error! y not known here. x is still known here.

System.out.println("x is " + x);

}

}

Variables : Scope and Life time

// This program will not compile

class ScopeErr

{

public static void main(String args[])

{

int bar = 1;

{ // creates a new scope

int bar = 2; // Compile-time error

}

}

}

Operators

 Operators can be divided into four groups:

 Arithmetic

 Bitwise

 Relational

 Logical

 Assignment

Operators : Arithmetic Operators
Operator Result

+ Addition

- Subtraction(Also Unary Minus)

* Multiplications

/ Division

% Modulus

++ Increment

-- Decrement

+= Addition Assignment

-= Subtraction ‘’

*= Multiplication ,,

/= Division ,,

%= Modulus ,,

Operators : Arithmetic Operators

 Used in arithmetic expressions.

 The operands of the arithmetic operators must be of a

numeric type or char types (since the char type in Java

is a subset of int)

 Arithmetic operators are classified as:

 Basic Arithmetic Operators

 Modulus Operators

 Arithmetic Assignment Operators

 Increment and Decrement Operators

Arithmetic Operators : Basic Arithmetic

 Basic arithmetic operators are

 Addition : +

 Subtraction : -

 Multiplication : *

 Division : /

 When the division operator is applied to an integer type,

there will be no fractional component attached to the

result.

Arithmetic Operators : Modulus Operator(%)

 Returns the remainder of a division operation.

 It can be applied to floating-point types as well as integer types.

 Example:

int x = 42;

double y = 42.25;

System.out.println("x mod 10 = " + x % 10);

System.out.println("y mod 10 = " + y % 10);

Output:

x mod 10 = 2

y mod 10 = 2.25

Arithmetic Operators : Arithmetic Compound Assignment

Operators
 Arithmetic operator is combined with assignment operator.

 += , -=, *=, /=, %=

 Any statement of the form

var = var op expression;

can be rewritten as

var op=expression;

 Benefits :

 Save a bit of typing time.

 They are implemented more efficiently by the Java run-time

system than their equivalent long forms.

Arithmetic Operators : Increment and Decrement Operators

 ++, --

 Example :

x = x + 1; can be rewritten as: x++;

x = x - 1; can be rewritten as: x--;

 These operators are appear in

 postfix form :

Example:

x = 42;

y = x++; //output of y : 42

 prefix form :

Example:

x = 42;

y = ++x; //output of y : 43

Operators : Bitwise Operators

Operator Result

~ Bitwise Unary NOT

& Bitwise AND

| Bitwise OR

^ Bitwise Exclusive OR

>> Shift Right

>>> Shift Right Zero Fill

<< Shift Left

&= Bitwise AND Assignment

|= Bitwise OR Assignment

^= Bitwise Excusive OR Assignment

>>= Shift right Assignment

>>>= Shift right zero fill Assignment

<<= Shift left Assignment

Operators : Bitwise Operators

 These operators act upon the individual bits of their operands.

 Bitwise operators can be classified as:

 Bitwise Logical Operators

 Left Shift Operator

 Right Shift Operator

 Unsigned Right Shift Operator

 Bitwise Assignment Operators

Binary Number Representation in Java

 byte b=42;

2^1+2^3+2^5

2+8+32=42

 left most bit

 0 means number is positive

 1 means number is negative

0 0 1 0 1 0 1 0

2^7 2^6 2^5 2^4 2^3 2^2 2^1 2^0

 Negative Number Representation in Java

 Java uses 2’s complement encoding

a. inverting 1 to 0 and vice versa

b. add 1 to the result

Eg: -

byte b=-42;

42 is represented as 00101010

a. Inver 1s and zeros =11010101

b. Add 1 to the result 11010101+

1

Result= 11010110

 To Decode a Negative Number

a. Invert all 1s and 0s

b. Add 1 to the result

Eg:-

-42= 11010110

a. Inver all 1s and zeros= 00101001 +

b. Add 1 1

Result=00101010

Bitwise Operators : Bitwise Logical Operators

A B A|B A&B A^B ~A

0 0 0 0 0 1

1 0 1 0 1 0

0 1 1 0 1 1

1 1 1 1 0 0

int a = 3;

int b = 6;

int c = a | b;

int d = a & b;

int e = a ^ b;

int f = (~a & b) | (a & ~b);

System.out.println(" c : "+c+" d : "+d+" e : "+e+" f : "+f);

Output: ?

Bitwise Operators : Left Shift Operators

 The left shift operator, <<, shifts all of the bits in a value to the left a

specified number of times.

 Syntax:

value << num

 For each shift left, the high-order bit is shifted out and a zero is

brought in on the right.

 Byte and short values are promoted to int when an expression is

evaluated. Furthermore, the result of such an expression is also an

int.

Example of left shift operator:

byte a = 64,b;

int i;

i = a << 2;

b = (byte) (a << 2);

System.out.println("Original value of a: " + a);

System.out.println("i and b: " + i + " " + b);

Output:

Original value of a: 64

i and b: 256 0

Bitwise Operators : Right Shift Operators

 The right shift operator, >>, shifts all of the bits in a value to the

right a specified number of times.

 Syntax :

value >> num

 Example : int a = 32;

a = a >> 2; // a now contains 8

 When a number is shifting right, the top (leftmost) bits exposed by

the right shift are filled in with the previous contents of the top bit.

This is called sign extension and serves to preserve the sign of

negative numbers when you shift them right.

 Example : –8 >> 1 is –4

11111000 –8

>>1

11111100 –4

Bitwise Operators : Unsigned Right Shift Operators

 Unsigned shift-right operator, >>>, always shifts zeros into the

high-order bit.

Example :

int a=-1;

a=a>>>24;

System.out.println(a);

11111111 11111111 11111111 11111111 –1

>>>24

00000000 00000000 00000000 11111111 255

Bitwise Operators : Bitwise Assignment Operator

 All of the binary bitwise operators have a shorthand form

 Example :

a = a >> 4; equivalent to a >>= 4;

a = a | b; equivalent to a |= b;

Operators : Boolean Logical Operator

 Operate only on boolean

operands.

 All of the binary logical

operators combine two

boolean values to form a

resultant boolean value.

Operator Result

& Logical AND

| Logical OR

^ Logical XOR (exclusive OR)

! Logical unary NOT

|| Short-circuit OR

&& Short-circuit AND

&= AND assignment

|= OR assignment

^= XOR assignment

== Equal to

!= Not equal to

?: Ternary if-then-else

Boolean Logical Operator : Basic Boolean Logical Operator

 The logical Boolean operators, &, |, and ^, operate on boolean

values in the same way that they operate on the bits of an integer.

 The logical ! operator inverts the Boolean state:

!true == false and !false == true.

A B A|B A&B A^B !A

False False False False False True

True False True False True False

False True True False True True

True True True True False False

Boolean Logical Operator : Short circuit Operator

 The & and | operators, when used as logical operators, always

evaluate both sides.

 The && and || operators "short-circuit", meaning they don't

evaluate the right hand side if it isn't necessary.

 Example :

if (denom != 0 && num / denom > 10)

 Example : situation in which && and || can not be used

if(c==1 & e++ < 100) d = 100;

Here, using a single & ensures that the increment operation will be

applied to e whether c is equal to 1 or not

 Boolean Assignment Operators

 &=

 |=

 ^=

 Boolean Comparison Operators

 ==

 !=

 Boolean Ternary Operator ? :

 Syntax :

expression1 ? expression2 : expression3

expression2 and expression3 are required to return the

same type, which can’t be void.

 Example :

int a=2,b=3,c=4,d;

d=a>b?a:b;

System.out.println(d); //output : 3

Operators : Relational Operator

 The relational operators determine the relationship that one operand

has to the other.

 The outcome of these operations is a boolean value i.e. true or false.

Operator Result

== Equal to

!= Not equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

Operators : Assignment Operator

 Syntax :

var = expression;

Variable must be compactable with expression

 It allows you to create a chain of assignments.

Example :

int x, y, z;

x = y = z = 100; // set x, y, and z to 100

Operators Precedence

Precedence

1 () [] .
2 ++ -- ~ !

3 * / %

4 + -

5 >> >>> <<

6 > >= < <=

7 == !=

8 &

9 ^

10 |

11 &&

12 ||

13 ?:

14 =

DOT
OPERATOR

Tutorial 2:

 Q1: Write a java program to do operations addition, subtraction,

multiplication and division on any two numbers specified.

 Q2 a: Predict Output of the following code segment:

int a=2,b=1,c=1,d;

d=a | 4 + c >> b & 7;

System.out.println(d);

Q2 b:

int xa=2;

int ya=xa++;

int za=xa;

System.out.println("xa : "+(++xa)+" ya: "+ya+" za : "+za);

Type Conversion and Casting

 Assign a value of one type to a variable of another type is called

type conversion.

 Type conversion is classified as :

 Automatic Type Conversion

 Explicit Type Conversion

 An automatic type conversion will take place if the following

two conditions are met:

 The two types are compatible.

 The destination type is larger than the source type.

 Example :

 Integer and floating-point types are compatible with each other

 int type is always large enough to hold all valid byte values

 Type Conversion Rules :

 All byte and short values are promoted to int

 If one operand is long then the whole expression is promoted to long

 If one operand is float then the whole expression is promoted to float

 If one operand is double then the whole expression is promoted to double

 Example :

byte b = 50;

b = b * 2; // Error! Cannot assign an int to a byte!

 To handle this situation rewrite the above code as :

byte b = 50; OR byte b = 50;

b = (byte)(b * 2); int c;

c = b * 2;

Q)

byte b = 42;

char c = 'a';

short s = 1024;

int i = 50000;

float f = 5.67f;

double d = .1234;

System.out.println((f * b) + (i / c) - (d * s));

What is the type of data displayed by the println()? Why?

Explicit Type Conversion

 To create a conversion between two incompatible types, we must

use a cast.

 Syntax:

(target-type) value

target-type specifies the desired type to convert the specified value

 narrowing conversion : Explicitly making the value narrower so

that it will fit into the target type

 Ex: Assign an int value to a byte variable

int a;

byte b;

// ...

b = (byte) a;

 Truncation : the fractional component is lost

 Ex : floating-point value is assigned to an integer type

 If the size of the whole number component is too large to fit into the

target integer type, then that value will be reduced to modulo the

target type’s range.

Q)

byte b,c;

int i = 257,j;

double d = 323.142;

b = (byte) i;

c = (byte) d;

j = (int) d;

What is the value of b, c and j after executing above java codes?

Control Statements

 Control statements are used to alter the execution of statements

based on certain conditions.

 Java’s program control statements can be put into the following

categories:

 Selection statements/Branching Statements

 Iteration/Looping statements

 Jump statements

Selection Statement

 Selection statements allows to control the flow of

program’s execution based upon conditions known

only during run time.

 Java supports two selection statements:

 if

 nested if

 if-else-if ladder

 switch

 nested switch

Selection Statement : if

 It can be used to route program execution through two different paths.

 Syntax :

if (condition)

statement1;

else

statement2;

Each statement may be a single statement or a compound statement

enclosed in curly braces.

The condition is any expression that returns a boolean value.

The else clause is optional.

Selection Statement : nested if

 A nested if is an if statement that is the target of another if or

else.

 Example :

if(i == 10)

{

if(j < 20) a = b;

if(k > 100) c = d;

else a = c;

}

else a = d;

Selection Statement : if-else-if ladder

 Syntax :

if(condition)

statement;

else if(condition)

statement;

else if(condition)

statement;

...

else

statement;

Selection Statement : switch
 Multiway branch statement. Used in menu driven programming.

 Syntax :

switch (expression)

{

case value1:

// statement sequence

break;

case value2:

// statement sequence

break;

...

case valueN:

// statement sequence

break;

default:

// default stmt sequence

}

 The expression must be of type byte, short, int, or char.

 Each of the values specified in the case statements must be of a type

compatible with the expression.

 Each case value must be a unique literal (that is, it must be a

constant, not a variable).

 Duplicate case values are not allowed.

 If we omit the break, execution will continue on into the next case.

Selection Statement : nested switch

 A switch statement inside another switch

 Example :

switch(count)

{

case 1:

switch(target) // nested switch

{

case 0: System.out.println("target is zero");

break;

case 1: // no conflicts with outer switch

System.out.println("target is one");

break;

}

break;

case 2: // ...

 Important features of the switch statements :

 The switch differs from the if in that switch can only test for equality,

whereas if can evaluate any type of Boolean expression.

 No two case constants in the same switch can have identical values.

 A switch statement is usually more efficient than a set of nested ifs and

is faster when lot of cases are to be considered.

 Write a java program to print integers 1,2,3,4 and 5 in words using

switch

Iteration Statement

 A loop repeatedly executes the same set of instructions until a

termination condition is met.

 Java’s iteration statements(loops) are

 while

 do-while

 for

Iteration Statement : while (entry-controlled loop)

 Syntax :

while(condition)

{

// body of loop

}

 The condition can be any Boolean expression.

 The body of the loop will be executed as long as the conditional

expression is true.

 The body of the while can be empty.

 Write a program to print 10 to 0 using while loop.

 Write a program to find the mid point between i and j

Iteration Statement : do-while (exit-control loop)
 Syntax:

do

{

// body of loop

} while (condition);

 do-while loop always executes its body at least once

class DoWhile

{ public static void main(String args[])

{ int n = 10;

do {

System.out.println(n); n--;

} while(n > 0);

}

}

Iteration Statement : for

 Syntax :

for(initialization; condition; iteration)

{

// body

}

 It is possible to declare the variable inside the initialization portion of

the for. When we declare a variable inside a for loop, the scope of

that variable ends when the for statement does.

 It is possible to include more than one statement in the initialization

and iteration portions of the for loop.

 Write a program to find the factorial of a number.

 for Loop Variations:

 The condition controlling the for can be any Boolean expression.

 Example : boolean done = false;

for(int i=1; !done; i++)

{ ----------

}

 Either the initialization or the iteration expression or both may be

absent

 We can create an infinite loop by leaving all three parts of the for

empty.

 Nested Loops:

 one loop may be inside another

class Nested

{ public static void main(String args[])

{

for(i=0; i<3; i++)

{

for(j=i; j<3; j++)

System.out.println("i : "+i+"\tj : "+j);

System.out.println("--------------"); //output

}

}

Jump Statement

 Transfer control to another part of the program.

 Java supports three jump statements:

 break

 continue

 return

Jump Statement : break

 break statement has three uses.

 It terminates a statement sequence in a switch statement

 It can be used to exit a loop

 When used inside a set of nested loops, the break statement will only break out of

the innermost loop

 It can be used as a “civilized” form of goto.

 Syntax : break label;

 label is the name of a label that identifies a block of code

 When executing a break statement, control is transferred out of the named

block of code. The labeled block of code must enclose the break

statement, but it does not need to be the immediately enclosing block.

class Break

{ public static void main(String args[])

{ boolean t = true;

first:

{ second:

{ third:

{

System.out.println("Before the break.");

if(t) break second; // break out of second block

System.out.println("This won't execute");

}

System.out.println("This won't execute");

}

System.out.println("This is after second block.");

}

}

}
//output:

Before the break.

This is after second block.

Jump Statement : continue

 Continue running the loop, but stop processing the remainder of the

code in its body for this particular iteration.

 In while and do-while loops, a continue statement causes control to be

transferred directly to the conditional expression that controls the loop.

 In a for loop, control goes first to the iteration portion of the for

statement and then to the conditional expression.

 Q) Write a program to print all even numbers between 0 and 20

using for loop and continue statement

 continue may specify a label to describe which enclosing loop to

continue

class ContinueLabel

{ public static void main(String args[])

{

outer:

for(int i=0;i<4;i++)

{

for(int j=0;j<4;j++)

{

if(j==2)

continue outer;

System.out.println("i : "+i+" j : "+j);

}

}

}

}

Jump Statement : return

 Used to explicitly return from a method.

 Program control to transfer back to the caller of the method.

 Immediately terminates the method in which it is executed

class Return

{

public static void main(String args[])

{

boolean t = true;

System.out.println("Before the return.");

if(t) return; // return to caller

System.out.println("This won't execute.");

}

}

Reading Input from user
 A Java program can obtain input from the console through the keyboard.

 The Java system variable System.in represents the keyboard.

 The Java programming language provides a collection of methods stored in

the Scanner class that perform read operations.

 The Java program must first import the containing class using

import java.util.Scanner;

 Then a Scanner object is constructed using the following statement:

Scanner in = new Scanner(System.in);

 Different methods that can be invoked using scanner object are:

in.nextByte(), in.nextShort(), in.nextInt(), in.nextLong(), in.nextFloat(),

in.nextDouble(), in.nextLine()

Sample program
import java.util.Scanner;

Import java.io.*;

class Sampleapp {

public static void main(String[] args) {

int num;

float fnum;

String str;

Scanner in = new Scanner(System.in);

System.out.println("Enter a string: ");

str = in.nextLine(); //read i/p string

System.out.println("Input String is: "+str);

System.out.println("Enter an integer: ");

num = in.nextInt(); //read i/p integer no

System.out.println("Input Integer is: "+num);

System.out.println("Enter a float number: ");

fnum = in.nextFloat(); //read i/p float number

System.out.println("Input Float number is: "+fnum);

}

}

Assignment 1(Date of submission :27/2/17)

 Set 1(Roll 1-20)

1. Design a use case diagram for a Hospital management system.

2. Write a program to display Armstrong numbers in an interval in

java.

 Set 2 (Roll:21-40)

1. Design a class diagram for a Railway reservation system.

2. Write a program to display prime numbers in an interval in

java.

 Set 3 (Roll:41-59)

1. Design a class diagram for Course registration system.

2. Write a menu driven program to implement a calculator in java.

